64 research outputs found

    Direct parametric reconstruction from undersampled (k, t)-space data in dynamic contrast enhanced MRI

    Get PDF
    The Magnetic Resonance Imaging (MRI) signal can be made sensitive to functional parameters that provide information about tissues. In dynamic contrast enhanced (DCE) MRI these functional parameters are related to the microvasculature environment and the concentration changes that occur rapidly after the injection of a contrast agent. Typically DCE images are reconstructed individually and kinetic parameters are estimated by fitting a pharmacokinetic model to the time-enhancement response; these methods can be denoted as "indirect". If undersampling is present to accelerate the acquisition, techniques such as kt-FOCUSS can be employed in the reconstruction step to avoid image degradation. This paper suggests a Bayesian inference framework to estimate functional parameters directly from the measurements at high temporal resolution. The current implementation estimates pharmacokinetic parameters (related to the extended Tofts model) from undersampled (k, t)-space DCE MRI. The proposed scheme is evaluated on a simulated abdominal DCE phantom and prostate DCE data, for fully sampled, 4 and 8-fold undersampled (k, t)-space data. Direct kinetic parameters demonstrate better correspondence (up to 70% higher mutual information) to the ground truth kinetic parameters (of the simulated abdominal DCE phantom) than the ones derived from the indirect methods. For the prostate DCE data, direct kinetic parameters depict the morphology of the tumour better. To examine the impact on cancer diagnosis, a peripheral zone prostate cancer diagnostic model was employed to calculate a probability map for each method

    Respiratory motion correction in dynamic MRI using robust data decomposition registration - Application to DCE-MRI.

    Get PDF
    Motion correction in Dynamic Contrast Enhanced (DCE-) MRI is challenging because rapid intensity changes can compromise common (intensity based) registration algorithms. In this study we introduce a novel registration technique based on robust principal component analysis (RPCA) to decompose a given time-series into a low rank and a sparse component. This allows robust separation of motion components that can be registered, from intensity variations that are left unchanged. This Robust Data Decomposition Registration (RDDR) is demonstrated on both simulated and a wide range of clinical data. Robustness to different types of motion and breathing choices during acquisition is demonstrated for a variety of imaged organs including liver, small bowel and prostate. The analysis of clinically relevant regions of interest showed both a decrease of error (15-62% reduction following registration) in tissue time-intensity curves and improved areas under the curve (AUC60) at early enhancement

    The Importance Of Multi-Reader Assessment For External Validation Of Prostate Lesion Classification Models Using Quantitative MpMRI

    Get PDF
    Machine learning for classifying prostate mpMRI lesions may help reduce unnecessary biopsies. However, external validation with multiple scanners and readers is required before the clinical adoption of such models can be considered. Two readers validated a previously published and well-performing logistic regression model on an external cohort. The model performance was not generalisable and offered no advantage to using PSAd cut-offs, and there was marked variation in model score related to contour differences from different readers. This potential variability should be investigated in future models which use quantitative MRI

    Evolution of multi-parametric MRI quantitative parameters following transrectal ultrasound-guided biopsy of the prostate

    Get PDF
    To determine the evolution of prostatic multi-parametric magnetic resonance imaging (mp-MRI) signal following transrectal ultrasound (TRUS)-guided biopsy

    Utility of diffusion MRI characteristics of cervical lymph nodes as disease classifier between patients with head and neck squamous cell carcinoma and healthy volunteers

    Get PDF
    Diffusion MRI characteristics assessed by apparent diffusion coefficient (ADC) histogram analysis in head and neck squamous cell carcinoma (HNSCC) have been reported as helpful in classifying tumours based on diffusion characteristics. There is little reported on HNSCC lymph nodes classification by diffusion characteristics. The aim of this study was to determine whether pretreatment nodal microstructural diffusion MRI characteristics can classify diseased nodes of patients with HNSCC from normal nodes of healthy volunteers. Seventy-nine patients with histologically confirmed HNSCC prior to chemoradiotherapy, and eight healthy volunteers, underwent diffusion-weighted (DW) MRI at a 1.5-T MR scanner. Two radiologists contoured lymph nodes on DW (b = 300 s/m2) images. ADC, distributed diffusion coefficient (DDC) and alpha (α) values were calculated by monoexponential and stretched exponential models. Histogram analysis metrics of drawn volume were compared between patients and volunteers using a Mann–Whitney test. The classification performance of each metric between the normal and diseased nodes was determined by receiver operating characteristic (ROC) analysis. Intraclass correlation coefficients determined interobserver reproducibility of each metric based on differently drawn ROIs by two radiologists. Sixty cancerous and 40 normal nodes were analysed. ADC histogram analysis revealed significant differences between patients and volunteers (p ≤0.0001 to 0.0046), presenting ADC distributions that were more skewed (1.49 for patients, 1.03 for volunteers; p = 0.0114) and ‘peaked’ (6.82 for patients, 4.20 for volunteers; p = 0.0021) in patients. Maximum ADC values exhibited the highest area under the curve ([AUC] 0.892). Significant differences were revealed between patients and volunteers for DDC and α value histogram metrics (p ≤0.0001 to 0.0044); the highest AUC were exhibited by maximum DDC (0.772) and the 25th percentile α value (0.761). Interobserver repeatability was excellent for mean ADC (ICC = 0.88) and the 25th percentile α value (ICC = 0.78), but poor for all other metrics. These results suggest that pretreatment microstructural diffusion MRI characteristics in lymph nodes, assessed by ADC and α value histogram analysis, can identify nodal disease

    "Textural analysis of multiparametric MRI detects transition zone prostate cancer"

    Get PDF
    OBJECTIVES: To evaluate multiparametric-MRI (mpMRI) derived histogram textural-analysis parameters for detection of transition zone (TZ) prostatic tumour. METHODS: Sixty-seven consecutive men with suspected prostate cancer underwent 1.5T mpMRI prior to template-mapping-biopsy (TPM). Twenty-six men had 'significant' TZ tumour. Two radiologists in consensus matched TPM to the single axial slice best depicting tumour, or largest TZ diameter for those with benign histology, to define single-slice whole TZ-regions-of-interest (ROIs). Textural-parameter differences between single-slice whole TZ-ROI containing significant tumour versus benign/insignificant tumour were analysed using Mann Whitney U test. Diagnostic accuracy was assessed by receiver operating characteristic area under curve (ROC-AUC) analysis cross-validated with leave-one-out (LOO) analysis. RESULTS: ADC kurtosis was significantly lower (p < 0.001) in TZ containing significant tumour with ROC-AUC 0.80 (LOO-AUC 0.78); the difference became non-significant following exclusion of significant tumour from single-slice whole TZ-ROI (p = 0.23). T1-entropy was significantly lower (p = 0.004) in TZ containing significant tumour with ROC-AUC 0.70 (LOO-AUC 0.66) and was unaffected by excluding significant tumour from TZ-ROI (p = 0.004). Combining these parameters yielded ROC-AUC 0.86 (LOO-AUC 0.83). CONCLUSION: Textural features of the whole prostate TZ can discriminate significant prostatic cancer through reduced kurtosis of the ADC-histogram where significant tumour is included in TZ-ROI and reduced T1 entropy independent of tumour inclusion. KEY POINTS: MR textural features of prostate transition zone may discriminate significant prostatic cancer; Transition zone (TZ) containing significant tumour demonstrates a less peaked ADC histogram; TZ containing significant tumour reveals higher post-contrast T1-weighted homogeneity; The utility of MR texture analysis in prostate cancer merits further investigation

    STIR: software for tomographic image reconstruction release 2

    Get PDF
    We present a new version of STIR (Software for Tomographic Image Reconstruction), an open source object-oriented library implemented in C++ for 3D positron emission tomography reconstruction. This library has been designed such that it can be used for many algorithms and scanner geometries, while being portable to various computing platforms. This second release enhances its flexibility and modular design and includes additional features such as Compton scatter simulation, an additional iterative reconstruction algorithm and parametric image reconstruction (both indirect and direct). We discuss the new features in this release and present example results. STIR can be downloaded from http://stir.sourceforge.net

    Noise estimation from averaged diffusion weighted images: Can unbiased quantitative decay parameters assist cancer evaluation?

    Get PDF
    Purpose: Multiexponential decay parameters are estimated from diffusion-weighted-imaging that generally have inherently low signal-to-noise ratio and non-normal noise distributions, especially at high b-values. Conventional nonlinear regression algorithms assume normally distributed noise, introducing bias into the calculated decay parameters and potentially affecting their ability to classify tumors. This study aims to accurately estimate noise of averaged diffusion-weighted-imaging, to correct the noise induced bias, and to assess the effect upon cancer classification. Methods: A new adaptation of the median-absolute-deviation technique in the wavelet-domain, using a closed form approximation of convolved probability-distribution-functions, is proposed to estimate noise. Nonlinear regression algorithms that account for the underlying noise (maximum probability) fit the biexponential/stretched exponential decay models to the diffusion-weighted signal. A logistic-regression model was built from the decay parameters to discriminate benign from metastatic neck lymph nodes in 40 patients. Results: The adapted median-absolute-deviation method accurately predicted the noise of simulated (R=0.96) and neck diffusion-weighted-imaging (averaged once or four times). Maximum probability recovers the true apparent-diffusion-coefficient of the simulated data better than nonlinear regression (up to 40%), whereas no apparent differences were found for the other decay parameters. Conclusions: Perfusion-related parameters were best at cancer classification. Noise-corrected decay parameters did not significantly improve classification for the clinical data set though simulations show benefit for lower signal-to-noise ratio acquisitions. © 2013 Wiley Periodicals, Inc
    • …
    corecore